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Abstract
Spherical (S) and tesseral (T) tensor operators (TOs) have been extensively
used in, for example, EMR and optical spectroscopy of transition ions. To
enable a systematic review of the published tables of the operators and their
matrix elements (MEs) we have generated the relevant tables by computer,
using Mathematica programs. Our review reveals several misprints/errors
in the major sources of TTOs—the conventional Stevens operators (CSOs—
components q � 0) and the extended ones (ESOs—all q) for rank k = 2, 4,
and 6—as well as of some STOs with k � 8. The implications of using
incorrect operators and/or MEs for the reliability of EMR-related programs
and interpretation of experimental data are discussed. Studies of high-spin
complexes like Mn12 (S = 10) and Fe19 (S = 33/2) require operator and ME
listings up to k = 2S, which are not presently available. Using the algorithms
developed recently by Ryabov, the generalized ESOs and their MEs for arbitrary
rank k and spin S are generated by computer, using Mathematica. The extended
tables enable simulation of the energy levels for arbitrary spin systems and
symmetry cases. Tables are provided for the ESOs not available in the literature,
with odd k = 3, 5, and 7 for completeness; however, for the newly generalized
ESOs with the most useful even rank k = 8, 10, and 12 only, in view of the
large listings sizes. General source codes for the generation of the ESO listings
and their ME tables are available from the authors.
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1. Introduction

Electron magnetic resonance (EMR), including, for example, EPR, ESR, and ENDOR (see,
e.g. Pilbrow 1990, Mabbs and Collison 1992, Weil et al 1994), and optical spectroscopy (OS)
(see, e.g. Newman and Ng 2000, Mulak and Gajek 2000) as well as related studies,
for example Mössbauer spectroscopy and/or magnetism, of paramagnetic centres require
appropriate Hamiltonians (see, e.g., Stevens 1997). The tensor operators of the (effective)
spin (S) and orbital (L) or total (J) angular momenta play an important role as a starting
point for construction of the generalized spin Hamiltonians (SH), including the zero-field
splitting (ZFS) and higher-order electronic Zeeman terms used in EMR, as well as the crystal
field (CF) Hamiltonians used in OS (see, e.g. Rudowicz 1987a, 1988, Rudowicz and Misra
2001). Subsequent calculations of the energy levels enable simulation, analysis, and fitting
of EMR (or optical) spectra of isolated paramagnetic ions in crystals and exchanged coupled
complexes.

Various conventional and operator notations have been used in the EMR area, as reviewed
by Rudowicz (1987a), (1988). The existing abundance of operator and ZFS parameter notations
has resulted in considerable confusion, which hampers direct comparison of data from different
researchers (see, e.g., Rudowicz and Misra 2001, Rudowicz and Sung 2001, Rudowicz
2002). Apart from the early notations using explicitly the angular momentum operators,
two classes of the tensor operators (TOs) are used in the literature: (i) spherical (STOs) and
(ii) tesseral (TTOs), which are the operator equivalents to the spherical and tesseral harmonics,
respectively (see, e.g. Kibler 1980, Rudowicz 1987a, 1988). The major operators belonging
to the TTO category are the conventional Stevens operators (CSOs), which include only the
components q � 0 (Stevens 1952), and more recently the extended Stevens operators (ESOs),
which include all components −k � q � +k (Rudowicz 1985a, 1985b). Various types of TTOs
and STOs have been reviewed and their conversion factors tabularized (Rudowicz 1987a, 1988,
Rudowicz et al 1997). Due to the Wigner–Eckart theorem (see, e.g., Mabbs and Collison 1992,
Stevens 1997) all STOs differ only by a proportionality constant. The ESOs (CSOs) are by
now the most extensively used operators in EMR and the superposition model (Newman and
Ng 1989, Rudowicz 1987b) as well as, to a lesser extent, in CF and OS studies, and magnetism
(Rudowicz 1987a, 1988, Rudowicz and Misra 2001, Rudowicz and Sung 2001, Rudowicz
2002).

The main rationale for this work is to facilitate EMR-related calculations and simulations
by using computer algebra and thus to provide efficient tools for studies of low symmetry and
high spin systems. This requires generalization of the existing operators to higher ranks k
and including all components q (−k � q � +k). Efficient usage of any type of operators
requires the knowledge of their matrix elements (MEs). However, such calculations by hand
are a cumbersome and error-prone task, and the difficulties increase with increasing rank k and
lowering symmetry. The ZFS (CF) Hamiltonians for the lowest triclinic symmetry involve all
components q for a given admissible rank k � 2S (2L or 2J ). Therefore explicit and well-tested
ME tables or general expressions, which can be programmed into a computer, are indispensable.
The developers of the EMR-related computer programs used in experimental studies rely
directly or indirectly on the ME tables for the CSOs (ESOs) available in the literature. Needless
to say, such usage of the incorrect MEs from source tables may adversely affect subsequent
calculations and interpretation of experimental results. Although the accuracy of such tables
is crucial, it appears that since Hutchings (1965) listed some misprints and errors occurring
in the earlier published tables, no further check-ups have been carried out. Hence, we also
carry out a systematic check-up of the pertinent tables using our Mathematica programs and
computer-generated tables.
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Due to historical development of the Stevens operators from the conventional (q � 0)
ones (Stevens 1952) to the extended (−k � q � +k) ones (Rudowicz 1985a, 1985b, 1987a,
1988), these operators have some drawbacks. Their construction has not been based on a
general formula and they are not normalized (Rudowicz 1985a, 1985b, 1987a, 1988). This
is unlike the situation for the well-defined and normalized STOs (Rudowicz 1985a, 1985b,
1987a, 1988) originating from the classical papers by Racah (1942a, 1942b, 1942c) and
subsequently developed within the angular momentum theory (see, e.g., Silver 1976). While
the transformation properties for the STOs have been worked out based on the Wigner rotation
matrices (see, e.g., Buckmaster et al 1972, Silver 1976), those for the ESOs have been worked
out much later utilizing the explicit expressions for the STOs (Buckmaster et al 1972) for
k = 2–6 (Rudowicz 1985a, 1985b; see also Tennant et al 2000). Compact ME expressions
exist for the STOs (see, e.g. Smith and Thornley 1966). Explicit listings are generally available
for the most useful even ranks k = 2, 4, and 6 for the ESOs and STOs (for references,
see Rudowicz 1985a, 1985b, 1987a, 1988, Rudowicz and Misra 2001), but for the odd ranks
k = 3, 5, and 7 for the STOs only, while the ESO and STO listings for rank k = 8 have until
recently been available in unpublished reports (for references, see section 4).

The available listings for k � 6 are sufficient for mononuclear paramagnetic complexes,
since the highest spin is S = 7/2, e.g. for Gd3+. However, the discovery more than a decade
ago of the high-spin complexes, e.g. Mn12 and Fe8 with the total spin S = 10, which appear
to exhibit macroscopic quantum tunnelling, and Fe19 with S = 33/2 (for references, see,
e.g. Chung 2003), has prompted demand for the higher-rank operators up to k = 2S. Hence it
is of importance to develop efficient means for generalization of the existing tables of the ES
and ST operators as well as their MEs to arbitrary rank k and spin S. The extended tables could
be used to simulate the energy levels for arbitrary spin systems and symmetry cases. This may
enable a better understanding of the properties of the high-spin Mn12 and Fe8 complexes.

The organization of the paper is as follows. In section 2 we outline the computational
methods and present the findings of a systematic review of the published ME tables for the
CSOs (q � 0). This survey reveals several misprints and/or errors in the major source tables for
the CSOs for the rank k = 2, 4, and 6, which have a bearing on the derived MEs for the ESOs
(−k � q � +k). Implications of these findings for the reliability of the available EMR-related
computer programs are also discussed. In section 3 we consider the generalization in question
using the algebraic algorithms developed by Ryabov (1999) based on the relationships between
the STOs and TTOs. Using the conversion factors between the ESOs and various TTOs, we
have generated explicit tables of both ES and ST operators as well as their MEs by computer,us-
ing Mathematica. Various misprints and inconsistencies in the available listings of the CSOs or
ESOs and several types of the STOs of various ranks revealed by our survey are outlined in sec-
tion 4. For the benefit of practitioners who need explicit forms, the computer generated tables
are provided for completeness in appendix B.1 for the ESOs with odd k = 3, 5, and 7 not avail-
able in the literature, including all components (−k � q � +k) necessary for low symmetry. In
appendix B.2 the listings of the newly generalized ESOs are provided beyond the usual listings
for k = 2, 4, and 6 available in the literature. However, in view of the large sizes, the listings
are limited to the most useful even ranks k = 8, 10, and 12 and q � 0 only, whereas rules for
obtaining the negative components are provided. General source codes for the generation of
the ESOs and their ME tables for arbitrary high rank and spin are available from the authors.

2. Tables of the matrix elements of the conventional and extended Stevens operators

A number of computer programs for simulation and interpretation of experimental EMR spectra
have been worked on in various groups; to name a few, Nettar (1984), Mabbs and Collison
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(1992), McGavin et al (1993), Mombourquette et al (1995), Wang and Hanson (1995), and
Stoll (2003a). The developers of such programs as well as EMR practitioners rely directly or
indirectly on the major source listings of the CSOs (ESOs) and their ME tables available in the
literature: Abragam and Bleaney (1970, 1973, 1986), Altshuler and Kozyrev (1972, 1974)—
referred to later as A/B(E1), A/B(R), A/B(E2), A/K(R), and A/K(E), respectively. Explicit
partial listings of the CSOs by Orbach (1961) and those of the ESOs by Newman and Urban
(1975) were also often referred to. Hutchings (1965) has listed some misprints and errors
occurring in the earlier published ME tables for the CSOs, whereas independently Buckmaster
(1962) and Birgeneau (1967) have listed the MEs of several selected STO components in the
form later used in A/B(E1) and in numerical form, respectively. Lindgård (1975), Lindgård
and Danielsen (1974), Danielsen (1973), Danielsen and Lindgård (1972) have discussed the
interrelationships between the Racah and Stevens operators and provided their explicit listings
for some ranks (including k = 8) and components. Pilbrow (1990) has provided the ME tables
for components of the spin operators Si (i = x, y, z) and their second-order combinations
for S = 1/2 to 3. Since the latter tables are of limited usefulness nowadays, no attempt has
been made to develop a special computer program needed for generating similar tables for
comparison.

Our studies of high-spin complexes (Chung and Rudowicz 2000, Sung et al 2000,
Chung 2003) have prompted us to develop tools for simulations and interpretation of EMR
spectra based on the Mathematica programming language, which also provides algebraic and
graphic capabilities. By using a computer program for algebraic manipulations, human or
typographical errors could be avoided. Note that other programs involving computations of
the MEs of spin operators have some limitations; for example, the Mathematica program of
Siu (1994) used the built-in matrices for k = 2 and 4 and S limited to S � 5/2, whereas the
Fortran-based EPR.FOR (McGavin et al 1993) and EPR-NMR (Mombourquette et al 1995)
programs have some internal (size of the arrays) and external (see below) restrictions on the
values of k and S. The latter two programs internally generate the MEs from those for the
lowest rank k = 1 using explicit forms of the higher-rank operators and prescriptions given,
for example, by Buckmaster et al (1972). Hence, special care must be taken to ensure the
correctness of such involved computations.

Initially we have designed two Mathematica programs for ME computations:
(i) MatrixElements for the ESOs Oq

k (S), and (ii) MEGenerator for various major STOs (Chung
2003). These programs utilize internally the Buckmaster (1962) and Smith and Thornley
(1966), i.e. BST operators O(k)

q (Rudowicz 1987a, 1988), and incorporate the general ME
expression for O(k)

q in the basis of the angular momentum eigenstates | j, m〉 (Smith and
Thornley 1966):

〈 j, m ′|O(k)
q | j, m〉 = (−1) j−m′

(
j k j

−m ′ q m

)
〈 j ||Ok|| j〉, (1)

where the reduced matrix element is given by

〈 j ||Ok || j〉 = 1

2k

{
(2 j + k + 1)!

(2 j − k)!

}1/2

. (2)

The 3 j -symbols
( j k j

−m′ q m

)
can be either calculated from the algebraic expressions (see,

e.g., Buckmaster et al 1972, Silver 1976) or taken from tables (see, e.g. Heine 1993, Silver
1976), both of which are limited to certain cases. Fortunately, the 3 j - (and 6 j -) symbols are
provided as built-in Mathematica functions. The triangular rule limits the non-zero MEs of
the STOs and TTOs, and hence of the required ZFS (CF) terms, to the ranks k � 2 j . This
rule is employed in our Mathematica programs to avoid computing the MEs that are zero by
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default. The programs start computations only if the indices m and m ′ comply with the rule
m ′ = q + m; otherwise zero ME values are directly returned. When considering a specific
system, the generic symbol j in equations (1) and (2) shall be replaced by, for example, a
‘spin’ quantum number, for an orbital singlet ground state of a paramagnetic ion with an
effective spin S̃ or an exchange-coupled system with a total spin ST or a fictitious spin S′,
whereas an orbital quantum number L or J is used for the multiplet 2S+1L (3dn) or 2S+1LJ

(4fn), respectively (Rudowicz 1987a, 1988, Rudowicz and Misra 2001). For simplicity, in the
text and appendices we use the symbol S, J , or j for any ‘spin’ depending on the context.

In order to verify that equations (1) and (2) represent correctly the MEs of the BST
operators, we have cross-checked them with the general ME expressions for the Koster and
Statz (1959) and Buckmaster et al (1972), i.e. KS/BCS operators Tkq (Rudowicz 1987a, 1988).
This yields the same general conversion relation: O(k)

q = αk Tkq , where αk = √
(2k)!/(2kk!k!),

as given by Rudowicz (1987a, 1988). The explicit multiplication factors required for the
conversions dealt with in the programs MatrixElements and MEGenerator were taken from
Rudowicz (1987a, 1988; see, also, Rudowicz et al 1997). These programs yield the MEs of
the ESOs and major STOs for arbitrary values of S. The program MatrixElements was applied
to generate the ME tables for the ESOs Oq

k (S) for k = 2, 4, and 6 and S = 1/2 to 10 (Chung
2003). In principle both programs could be extended for an arbitrary rank k and any positive
integer or half-integer spin S. The major obstacle was the lack of the interconversion relations
between the BST operators or other STOs and the ESOs, since no explicit definitions of the
ESOs have until recently existed for k > 6 (see section 3).

The computer-generated ME listings for the ESOs for k = 2, 4, and 6 (Chung 2003) were
used to survey the major ME source tables (A/B(E1), A/B(R), A/B(E2), A/K(R), A/K(E)).
Our survey reveals several misprints or errors in the MEs for the CSOs (q � 0) listed
in appendix A, which have a bearing on the derived data for the ESOs (−k � q � +k).
Note that the recent listing by Misra (1999b) (M99) is mostly reproduced from A/K(E) and
carries over the original misprints/errors with a few corrections as per A/B(E2) listings (see
appendix A). A similar survey for the STOs is discussed in section 4. In appendix A we adopt
the ME notation used in A/K(E), i.e. rank k = n, component q = m, and we list only the
MEs of the type 〈M|Om

n |M − m〉, whereas the other half of the MEs can obtained from the
relation

〈M|Om
n |M − m〉 = (−1)m+n〈−M|Om

n |−M + m〉 = 〈M − m|Om
n |M〉. (3)

For example, the ME entries 〈5||3〉 for the operator O2
6 ( j = 6) refer to 〈+5||+3〉 and

〈−5||−3〉. Ryabov (1999) mentioned the existence of some errors in the earlier listings of
the Stevens operators and their ME tabulations; however, no errors were explicitly provided.
The listing provided to us by Ryabov (2001), including altogether nine ME errors and one
error in the scaling factors, enables a double-check of both sets of results—excluding the
latter errors 15 more cases (not counting the same errors in difference sources) are listed in
appendix A.

Some additional points relevant for users of the CSO/ESO listings and ME tables in
question are worth noting. In the A/K(E) tables (reproduced in M99),

(i) in some cases all MEs for a given S are zero, yet a non-zero common factor F is provided,
e.g. 1/2, 1; this inconsistency may be misleading;

(ii) for O4
4 (S = 3/2) and O4

6 (S = 5/2) no MEs are given; however, common factors F = 12
and 60 are provided, respectively; note that the triangular rule excludes these cases since
k > 2S, hence these entries are meaningless;
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(iii) some ME entries appear unnecessarily—either they do not exist or are not necessary for
the lower spin systems, e.g. the operator O0

6 , which is actually needed only for S � 3,
since all MEs are zero for S < 3.

The correctness of the ME tables, and to a lesser extent of the operator listings, may bear
crucially on the accuracy of the EMR-related computer programs based on such data. Since
the error in sign of the MEs of O0

2 for S = 1 and 3/2 occurs only in A/K(R) and A/K(E),
the impact of these misprints may be rather limited; nevertheless, some expressions for the
various derived quantities and possibly the signs of ZFS parameters for such spin systems
may be incorrect in the literature, especially in older Russian works. The errors in ME values
for various operators Oq

6 might have affected the corresponding expressions and hence the
resulting ZFS parameters for the systems with spin S = j listed in appendix A. A thorough
recheck of all pertinent source codes would be required to assess the implications of any errors
involved. The feasibility of a large-scale verification of the existing EMR-related computer
programs hinges upon concerted efforts and international collaboration of developers of various
computer programs. The framework for such collaboration has been proposed by Rudowicz
(2003a, 2003b). At the present stage we can offer some specific comments regarding two
programs. The list of the ESOs included in the current version of the program EasySpin (Stoll
2003a) has been corrected subsequent to the communication between the author (CZR) and
Stoll (2003b). However, the MEs used in this program still need to be verified pending the
comparison with appendix A.

During our initial attempts to apply the program EPR-NMR (Mombourquette et al 1995)
for higher spin values, we have encountered problems in generating reasonable energy levels
(Galeev and Rudowicz 1999). This has prompted us to extract the MEs of the Stevens operator
O0

2 from the output file of the program EPR-NMR for the integer spin S = 1–8. The outcomes
of our testing can be summarized as follows:

(i) for S < 5 the extracted MEs were exactly half of the MEs for O0
2 (ES) obtained from

our program MatrixElements, which are identical with those given by A/B(E), where the
maximum listed spin is S = 8;

(ii) for S = 5 the same results, i.e. ‘(1/2) rule’, were obtained except for 〈5|O0
2 |5〉, for which

the extracted value is 20, which is less more than half of the value for O0
2 (ES), i.e. 45;

(iii) for S � 6 several extracted MEs differ in an erratic way from the values of half of the MEs
for O0

2 (ES), e.g. three MEs with the highest MS (starting from MS = S) do not conform
to the ‘(1/2) rule’ for S = 6, whereas there are five for S = 7, and seven for S = 8; and

(iv) for S � 6 some unexpected non-diagonal MEs start to appear,e.g. for S = 6: 〈∓6|O0
2 |±5〉

and 〈∓5|O0
2 | ± 6〉.

The program EPR-NMR (Mombourquette et al 1995) employs two separate subroutines to
calculate MEs internally: first the MEs of the spin operators (S+, S−, Sz) are established and
then they are utilized to obtain the MEs of the Stevens operators from the explicit forms of
the STOs in terms of (S+, S−, Sz) listed in the unpublished tables of Buckmaster and Dering
(1967) discussed in section 4. The most probable reasons for the discrepancies revealed by
our tests may be an incorrect representation of the STOs and/or expressions for their MEs
for higher spin in the source code as well as the conversion factors used internally within the
program EPR-NMR. These problems were discussed in private communications between the
author (CZR) and Tennant (1999), who has also mentioned several other technical problems
and/or mistakes in the higher-order spin terms encountered during his work with the program
EPR-NMR (version 6.0). Some of these problems may have been solved/corrected in the later
versions of the program. It seems that the program EPR-NMR has never been used for practical
applications for spin systems with S > 5/2.
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3. Generalization of the extended Stevens operators to higher ranks and spins

Hoffmann (1990) considered generalization of Stevens’ operator-equivalent method in
application to the Racah STOs using the computer program REDUCE. He provided only a
relation between the “usual Stevens’ operators” and the newly defined operator equivalents.
Independently and more recently Ryabov (1999) worked out general algorithms for generation
of the Racah STOs and the ESOs, and also provided explicit formulae for the interconversions
of these operators and their MEs. Ryabov’s (1999) algorithms are more suitable for practical
purposes, e.g. programming on a computer. Interestingly, a recent SCI (Science Citation Index)
search for citations of the two papers reveals that neither Hoffmann’s nor Ryabov’s method
has been utilized for practical applications as yet. Using Ryabov (1999) algorithms, we have
extended the range of applicability of the ME programs for the ESOs (Chung 2003) to any
rank and spin.

The algebraic forms of the ESOs, i.e. the ‘Stevens operator equivalents’ defined by Ryabov
(1999) in terms of the angular momentum operators J± and Jz , are:

Oq
k (c) = α

2Fk,q

k−q∑
m=0

a(k, q; m)[J q
+ + (−1)k−q−m J q

−]J m
z (q = 0, 1, 2, . . . , k) (4)

Oq
k (s) = α

2iFk,q

k−q∑
m=0

a(k, q; m)[J q
+ − (−1)k−q−m J q

−]J m
z (q = 1, 2, . . . , k). (5)

Ryabov (1999) introduced the factors α = 1 for all q if k is an odd integer and α = 1 or 1/2
for even and odd q , respectively, if k is even. The coefficient Fk,q is the largest common factor
for all a(k, q; m) defined as

a(k, q − 1; m) = (2q + m − 1)a(k, q; m − 1) +

[
q(q − 1) − m(m + 1)

2

]
a(k, q; m)

+
k−q−m∑

n=1

(−1)n

[(
m + n

m

)
J (J + 1) −

(
m + n
m − 1

)
−

(
m + n
m − 2

)]

× a(k, q; m + n) (6)

with a(k, k; 0) = 1. Equations (4) and (5) imply a specific normalization and hence yield
specific conversion factors between the ESOs and other operators. The components Oq

k (c) and
Oq

k (s) correspond to the ESOs with positive q (including q = 0) and negative q , respectively
(Rudowicz 1985a, 1985b). The Mathematica program GenESOsME for generating explicitly
the ESOs Oq

k (J) of arbitrary rank computes first all coefficients a(k, q; m) and then Fk,q .
Note that Ryabov (1999) algorithms generate the ESOs in the asymmetric form. However, in
the literature the symmetric (anticommutator) form has been used exclusively for the CSOs
(A/B(E1), A/B(R), A/B(E2); A/K(R), A/K(E); M99), and most commonly for the STOs, for
which also the asymmetric form has occasionally been used (see section 4).

The program GenESOsME enables generation of the ESOs of higher ranks, beyond those
available in the literature, as well as extension of the MatrixElements program (Chung 2003)
to compute the MEs of the ESOs for arbitrary rank and spin. The explicit ESO listings and
their ME tables may be used in conjunction with the all-purpose simulation and fitting program
SIM developed by Weihe (2004; see also, Glerup and Weihe 1991, Jacobsen et al 1993). Such
programs require an external supply of the MEs, which once tabulated can be built into the
relevant subroutines, thus saving computing time. For the benefit of practitioners who need
explicit forms, some computer-generated ESO listings are provided in the appendices. In
appendix B.1 for completeness we provide the ESOs with odd k = 3, 5, and 7, including
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all components (−k � q � +k) necessary for low symmetry, which are not available in the
literature. Note that conversion factors for k = 3 and 5 are also listed (Rudowicz 1987a, 1988,
Rudowicz et al 1997). In appendix B.2 we provide the listings of the newly generalized ESOs
beyond the usual listings for k = 2, 4, and 6 available in the literature. However, in view of
the large size, the listings are limited to the most useful even ranks k = 8, 10, and 12 only.
General Mathematica source codes for the generation of the ESOs and their ME tables for
arbitrary high rank and spin are available from the authors upon request.

4. Listings of the tesseral and spherical tensor operators, and various conversion factors

In order to verify the correctness of our new programs for generation of the ESO and STO
listings as well as the ME tables, first our Mathematica outputs have been tested utilizing
several examples given by Ryabov (1999, 2001). Second, we have cross-checked the outputs
against various listings available in the literature. Especially useful are the source tables for the
various STOs, which extend to rank 8. Our Mathematica outputs have been fully compared with
the available asymmetric forms of the STOs, but only randomly checked against the existing
symmetric listings of the CSOs and STOs. The latter procedure required manual conversions
of our outputs to the anticommutator form using the basic relations J+ Jz = Jz J+ − J+ and
J− Jz = Jz J− + J−. Positive results of such tests provide conclusive evidence that both our
program GenESOsME and Ryabov’s (1999) equations are correct. As required by equations (4)
and (5), the program outputs show proper symmetry, i.e. the components Oq

k (s) = O−q
k can be

obtained from Oq
k (c) = O+q

k by multiplying O+q
k by the factor (−i ) and changing to negative

the sign at the J q
− terms (denoted Jmq in appendices B.1 and B.2). A by-product of these tests

is the identification of several errors and inconsistencies in the listings surveyed, which are
outlined below.

Comparison of the Racah STOs for k = 0–8 and q = +k to −k in the symmetric form in
Lindgård and Danielsen (1974) with those in Danielsen (1973) and Danielsen and Lindgård
(1972) shows that they are nearly identical. The definitions of the Racah and Stevens operators
have also been provided in Lindgård (1975),and explicit listings of the Stevens operators Oq

k (c)
in the symmetric form for k = 2, 4, 6, 8 and even q only in Danielsen and Lindgård (1972)
and Danielsen (1973). Checking against our Mathematica outputs the listings of the Racah
STOs in these tables randomly (i.e. for k = 2, q = 1; k = 4, q = 2, 3; k = 6, q = 4, 5; k = 7,
q = 4, 6; k = 8, q = 0, 2, 4, 6, 8), whereas those of the Stevens operators fully, and also
against other published listings for k = 2, 4, 6 (i.e. A/B(E2), A/K(E)), reveals the misprints
listed in appendices C.1 and C.2, respectively. The unpublished tables of Buckmaster and
Dering (1967), which nevertheless have been extensively utilized by various authors over the
years (see section 2), comprise the KS/BCS (Rudowicz 1987a, 1988) operators for k = 0–7
and q = +k to −k given in both the symmetric and asymmetric form. The symmetric form
of these tables has been randomly checked as in the case of the equivalent tables in Danielsen
and Lindgård (1972), Danielsen (1973), and Lindgård and Danielsen (1974), and the misprints
identified are listed in appendix C.3.1. The misprints identified in our comprehensive check
of Buckmaster and Dering (1967) tables in the asymmetric form are listed in appendix C.3.2.
Several misprints identified in the listing of Racah operators for k = 0–6 in table 2 of Tuszynski
(1990), which was referred to in Buckmaster et al (1972), are listed in appendix C.4. An
independent check of the original table 1 (for k = 0–7) in Buckmaster et al (1972) reveals no
misprints. A cross-check of Buckmaster et al (1972) and Tuszynski (1990) operator listings
suggests that the inconsistencies in the latter are genuine misprints. Assuming that these
misprints were not carried over to the subsequent numerical ME calculations, it may be
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expected that the ME tables of Tuszynski (1990) given in numerical form may be correct.
However, we have not attempted to verify the correctness of these ME tables, since in view of
the little use of these tables for any practical purpose, the amount of effort involved would not
be justified.

Ryabov (1999) has mentioned without providing explicit examples that the list of operator
equivalents in Misra et al (1996) contains a number of errors. Comparison of the latter list
and that in M99 with our computer-generated explicit ESO forms reveals identical misprints
as communicated to us by Ryabov (2001). It turns out that Misra et al (1996) and M99
reproduced the original A/K(R) [A/K(E)] operators O±m

n re-labelling them as Ŷ ±m
n (S), so

with some misprints, which are listed for completeness in appendix C.5. Note that these are
the combinations of the operators O±m

n defined by A/K(R) [A/K(E)] (alias Ŷ ±m
n in Misra et al

1996 and M99), which yield the actual ESOs (see, e.g., A/K(E), Rudowicz 1987a, 1988). The
notation Ŷ ±m

n (Misra et al 1996, M99) instead of the original one O±m
n (A/K(R), A/K(E))

is superfluous and may be misleading since the spherical harmonics are customarily denoted
Y ±m

n . Also the ME listings (see appendix A—note that the MEs of O0
2 appear correctly in M99,

possibly taken from A/B(E1) or A/B(E2)) and some pertinent ME relations were reproduced
by Misra et al (1996) and M99 from the original source A/K(E). Ryabov (2001) has pointed
out to us two other inconsistencies:

(i) the original A/K(E) definition ‘Om
n = (O+m

n + O−m
n )/2’, where the LHS represents the

ESOs with positive m, is missing in Misra et al (1996) and M99; and

(ii) in the last formula on p 45 of Misra et al (1996) the RHS should read ‘±i〈M|Om
n |M ±m〉’

(it is correct in M99).

Additionally, Rudowicz (2000) discussed various drawbacks of the reviews (Misra et al 1996,
Misra 1999a, 1999b, 1999c, 1999d), which concern the usage of a variety of symbols, correlated
neither mutually nor with the existing ESO notation (Rudowicz 1985a, 1985b, 1987a, 1988),
as well as the confusion between the properties of the TTOs and STOs, and inappropriate
nomenclature. Usage of separate symbols for the negative ESO components Oq

k (q < 0),
e.g. �m

n (Misra et al 1996, Misra 1999b) or Rm
n (Misra 1999d), and Cm

n for the associated
ZFS parameters, which follows the early notation of A/K(R) and A/K(E), is no longer justified
in view of the consistent notation introduced by Newman and Urban (1975) and Rudowicz
(1985a, 1985b, 1987a, 1988).

Other aspects arising from our survey are briefly summarized below. Ozier (1974) has
independently provided the STOs, of the type KS/BCS (Rudowicz 1987a, 1988), for k = 8
and q = 0, ±4, ±5, ±6, ±7, and ±8. The general form of these operators agrees with our
results. Marshall et al (1988) have provided listing of the ‘Racah polynomial operators’ and
the coefficients B(k, q; j) appearing in their MEs. Independent verification of the correctness
of this listing requires developing another computer program to generate such explicit forms.
In view of the limited usefulness of such listings we have not attempted such work. Various
aspects of the analysis of EPR spectra using ‘tesseral tensor angular momentum operators’ by
Buckmaster and Chatterjee (1998) have been critically commented on by Rudowicz (2003c).
Here we note only that clear definitions of the operator notations and crucial notions used in
the EMR area are important in order to avoid misunderstanding and incorrect results. In this
regard it may be useful to consult the recent reviews on

(i) the spin Hamiltonian formalisms (Rudowicz and Misra 2001);
(ii) the interrelations between the CF and ZFS quantities, which are often confused (Rudowicz

and Sung 2001); and
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(iii) the major intricacies awaiting unwary EMR spectroscopists (Rudowicz 2002), as well as
(iv) a note on the incorrect orthorhombic ZFS parameter relations (Rudowicz 2000).

The TTOs of the type classified by Rudowicz (1987a, 1988) as the normalized
combinations of spherical tensor (NCST) operators have several advantages over the ESOs
and have been promoted by McGavin et al (1990) and Tennant et al (2000), but with rather
limited success (Rudowicz and Misra 2001). The NCSTOs are simply related to the normalized
Stevens (NS) operators (for references, see Rudowicz 1985a, 1985b, 1987a, 1988) and at the
same time are linear combinations of the STOs. McGavin et al (1990) have defined their
NCSTOs in terms of the KS/BCS operators discussed in section 2 (see the classification by
Rudowicz 1987a, 1988). They also provided the conversion factors Am

l (or Aq
k ) relating the

ESOs denoted as Ōm
l and the ‘tesseral combinations of spherical-tensor operators’, i.e. the

NCSTOs, in their table 1 for rank l(k) = 0–8. Using the conversion factors between the ES
and KS/BCS operators (Rudowicz 1987a, 1988) obtained from our new Mathematica program
based on Ryabov (1999) algorithms we have generated independently table 1 of McGavin
et al (1990) and found the same results. This test also proves the correctness of our general
computer code.

Interestingly, in spite of the well-defined operators existing in the literature as discussed
above, some authors provide ‘independent-like’ explicit listings of some operator components
they need, e.g. for rank k = 2 or 4. However, in the case when regrettably no references to the
well-established definitions are provided, such practices (see, e.g., Shimokoshi and Ohi 1990,
Barra et al 1998, Lipiński 1999, Allard and Härd 2001, Mossin et al 2001, Misra et al 2003,
Sessoli and Gatteschi 2003) only add up to the widespread confusion concerning operator
and parameter notations (Rudowicz 1987a, 1988, Rudowicz and Misra 2001, Rudowicz and
Sung 2001). In view of the above survey, an updated comprehensive review of the intricacies
and interrelations between various notations used in the EMR and related areas covering the
post-1987 period would be timely and is now in progress.

5. Summary

We hope that the generalization of the ESOs to higher ranks k and arbitrary spin S carried out
here will boost the application of the ES and other related operators to high-spin complexes
like Mn12 and Fe10 with spin S = 10 or Fe19 with spin S = 33/2 at least for the magnetic
field parallel to the z-axis of the generalized ESOs. For general arbitrary magnetic field, the
transformation expressions for the generalized ESOs (Rudowicz 1985a,1985b) as well as those
for the STOs (Buckmaster 1964, 1966, Weiler and Wylie 1965, Tennant et al 2000) need to be
extended to higher ranks. The corrections to the existing operator and matrix elements tables
as well as the pertinent clarifications presented here may reduce the confusion and enhance
the reliability of the computer programs and the subsequent data analysis.

Acknowledgments

Thank are due to Dr Ryabov for providing us with his list of errors in tables and helpful
comments. Critical remarks at the early stages of this work by Dr Siu G G and some technical
help from Ms Sung H are appreciated. This work was supported by the RGC and the City
University of Hong Kong through the research grant: SRG 7001277.

Appendix A.

See table opposite.
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Table A.1. Corrections to various matrix elements of the Stevens operators listed in the respective sources. (Note: The first figure in the matrix element
entries stands for the scaling factor; e.g., 30 × (44

√
273) means that 30 is the scaling factor.)

Present work

Scaling factors

Operator ME A/K(R) A/K(E) Misra A/B(E1) (E2) A/B(R) Extracted Multiplied

O0
2

j = 1 〈1||1〉 1 × (−1)a,e 1 × (−1)a 1 × (+1) 1 × (+1) 1 × (+1) 1 × (+1) = +1
j = 3/2 〈3/2||3/2〉 3 × (−1)a,e 3 × (−1)a 3 × (+1) 3 × (+1) 3 × (+1) 3 × (+1) = +3
O4

4

j = 7 〈4||0〉 12 × (5
√

162)a 12 × (5
√

162)a 12 × (5
√

162)a 12 × (5
√

462) 12 × (5
√

462) 12 × (5
√

462) = 60
√

462
O1

6
j = 8 〈8||7〉 115 × (1092)b 115 × (1092)b 115 × (1092)b NAd NAd 15 × (12012) = 180 180

〈7||6〉 115 × (−91
√

30)b 115 × (−91
√

30)b 115 × (−91
√

30)b NAd NAd 15 × (−1001
√

30) = −15 015
√

30

〈6||5〉 115 × (−143
√

42)b 115 × (−143
√

42)b 115 × (−143
√

42)b NAd NAd 15 × (−1573
√

42) = −23 595
√

42

〈5||4〉 115 × (−126
√

13)b 115 × (−126
√

13)b 115 × (−126
√

13)b NAd NAd 15 × (−1386
√

13) = −20 790
√

13

〈4||3〉 115 × (70
√

15)b 115 × (70
√

15)b 115 × (70
√

15)b NAd NAd 15 × (770
√

15) = 11 550
√

15

〈3||2〉 115 × (91
√

66)b 115 × (91
√

66)b 115 × (91
√

66)b NAd NAd 15 × (1001
√

66) = 15 015
√

66

〈2||1〉 115 × (87
√

70)b 115 × (87
√

70)b 115 × (87
√

70)b NAd NAd 15 × (957
√

70) = 14 355
√

70

〈1||0〉 115 × (210
√

2)b 115 × (210
√

2)b 115 × (210
√

2)b NAd NAd 15 × (2310
√

2) = 34 650
√

2

j = 9/2 〈5/2||3/2〉 120 × (−2
√

21)b 120 × (−2
√

21)b 120 × (−2
√

21)b NAd NAd 120 × (2
√

21) = 240
√

21

j = 15/2 〈5/2||3/2〉 330 × (60
√

15)b 330 × (60
√

15)b 330 × (60
√

15)b NAd NAd 330 × (70
√

15) = 23 100
√

15
O2

6

j = 4 〈4||2〉 30 × (27
√

7)a 30 × (27
√

7)a 30 × (27
√

7)a 30 × (24
√

7) 30 × (24
√

7) 30 × (24
√

7) = 720
√

7
j = 5 〈1||−1〉 120 × (28)a,e 120 × (28)a 120 × (84) 120 × (84) 120 × (84) 120 × (84) = 10 080

〈5||3〉 120 × (−42
√

5)a,e 120 × (−42
√

5)a 120 × (−42
√

5)a 120 × (42
√

5) 120 × (42
√

5) 120 × (42
√

5) = 5040
√

5

j = 6 〈5||3〉 72 × (−14
√

165) 72 × (−14
√

165) 72 × (−14
√

165) 72 × (−14
√

165) 72 × (−14
√

65)a,e 72 × (−14
√

165) = −1008
√

165
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Table A.1. (Continued.)

Present work

Scaling factors

Operator ME A/K(R) A/K(E) Misra A/B(E1) (E2) A/B(R) Extracted Multiplied

O3
6

j = 7 〈4||1〉 90 × (−70
√

35)a 90 × (−70
√

35)a 90 × (−70
√

33) 90 × (−70
√

33) 90 × (−70
√

33) 90 × (−70
√

33) = −6300
√

33
O4

6
j = 3 〈2||−2〉 60 × (−6) 60 × (−6) 60 × (+6)a 60 × (−6) 60 × (−6) 60 × (−6) = −360

j = 7 〈4||0〉 60 × (−6
√

4211)b,e 60 × (−6
√

4211)b 60 × (−6
√

4211)b 60 × (−6
√

462) 60 × (−6
√

462) 60 × (−6
√

462) = −360
√

462

〈5||1〉 60 × (143
√

33)a,e 60 × (143
√

33)a 60 × (143
√

33)a 60 × (147
√

33) 60 × (147
√

33) 60 × (147
√

33) = 8820
√

33

j = 7/2 〈7/2||−1/2〉 60 × (3
√

55)a,e 60 × (3
√

55)a 60 × (3
√

55)a 60 × (3
√

35) 60 × (3
√

35) 60 × (3
√

35) = 180
√

35

j = 9/2 〈9/2||1/2〉 60
√

7 × (3
√

2)a 60
√

7 × (3
√

2)a 60
√

7 × (3
√

2)a 60
√

7 × (30
√

2) 60
√

7 × (30
√

2) 60
√

7 × (30
√

2) = 1800
√

14
O5

6

j = 8 〈8||3〉 30 × (44
√

273) 30 × (44
√

273) 30 × (41
√

273)a NAd NAd 30 × (44
√

273) = 1320
√

273
O0

4
j = 3 Scaling factor F = 60 F = 60 F = 60 F = 60 F = 20b,e

O3
4

j = 11/2 Scaling factor F = 12c F = 12c F = 12
√

5
c

NAd NAd

a Apparent misprint.
b Error.
c Difference in presentation only, no error.
d NA = not applicable since data for this operator are not given in this source.
e Errors found by Ryabov (private communication, 2001).
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Appendix B.

B.1. Listing of the explicit form for the ES operators with k = 3, 5, 7 and for both positive
and negative values of q

Note: J p = J+; Jm = J−; and X = J (J + 1)

O[3, 3] = 1
2 (Jm3 + J p3)

O[3,−3] = 1
2 i(Jm3 − J p3)

O[3, 2] = 1
2 (Jm2(−1 + J z) + J p2(1 + J z))

O[3,−2] = − 1
2 i(−Jm2(−1 + J z) + J p2(1 + J z))

O[3, 1] = 1
2 (5(−Jm + J p)J z + 5(Jm + J p)J z2 − (Jm + J p)(−2 + X))

O[3,−1] = − 1
2 i(5(Jm + J p)J z + 5(−Jm + J p)J z2 + (Jm − J p)(−2 + X))

O[3, 0] = J z + 5J z3 − 3J z X

O[5, 5] = 1
2 (Jm5 + J p5)

O[5,−5] = 1
2 i(Jm5 − J p5)

O[5, 4] = 1
2 (Jm4(−2 + J z) + J p4(2 + J z))

O[5,−4] = − 1
2 i(−Jm4(−2 + J z) + J p4(2 + J z))

O[5, 3] = 1
2 (27(−Jm3 + J p3)J z + 9(Jm3 + J p3)J z2 − (Jm3 + J p3)(−24 + X))

O[5,−3] = − 1
2 i(J p3(24 + 27J z + 9J z2 − X) + Jm3(−24 + 27J z − 9J z2 + X))

O[5, 2] = 1
2 (Jm2(−1 + J z)(6 − 6J z + 3J z2 − X) + J p2(1 + J z)(6 + 6J z + 3J z2 − X))

O[5,−2] = − 1
2 i(−Jm2(−1 + J z)(6 − 6J z + 3J z2 − X)

+ J p2(1 + J z)(6 + 6J z + 3J z2 − X))

O[5, 1] = 1
2 (42(−Jm + J p)J z3 + 21(Jm + J p)J z4 + 14(Jm − J p)J z(−3 + X)

− 7(Jm + J p)J z2(−9 + 2X) + (Jm + J p)(12 − 8X + X2))

O[5,−1] = − 1
2 i(42(Jm + J p)J z3 + 21(−Jm + J p)J z4 − 14(Jm + J p)J z(−3 + X)

+ 7(Jm − J p)J z2(−9 + 2X) + (−Jm + J p)(12 − 8X + X2))

O[5, 0] = J z(12 + 63J z4 − 50X + 15X2 − 35J z2(−3 + 2X))

O[7, 7] = 1
2 (Jm7 + J p7)

O[7,−7] = 1
2 i(Jm7 − J p7)

O[7, 6] = 1
2 (Jm6(−3 + J z) + J p6(3 + J z))

O[7,−6] = − 1
2 i(−Jm6(−3 + J z) + J p6(3 + J z))

O[7, 5] = 1
2 (65(−Jm5 + J p5)J z + 13(Jm5 + J p5)J z2 − (Jm5 + J p5)(−90 + X))

O[7,−5] = − 1
2 i(J p5(90 + 65J z + 13J z2 − X) + Jm5(−90 + 65J z − 13J z2 + X))

O[7, 4] = 1
2 (Jm4(−2 + J z)(75 − 52J z + 13J z2 − 3X)

+ J p4(2 + J z)(75 + 52J z + 13J z2 − 3X))

O[7,−4] = − 1
2 i(−Jm4(−2 + J z)(75 − 52J z + 13J z2 − 3X)

+ J p4(2 + J z)(75 + 52J z + 13J z2 − 3X))



5838 C Rudowicz and C Y Chung

O[7, 3] = 1
2 (858(−Jm3 + J p3)J z3 + 143(Jm3 + J p3)J z4 + 66(Jm3 − J p3)J z(−49 + 3X)

− 11(Jm3 + J p3)J z2(−215 + 6X) + 3(Jm3 + J p3)(600 − 62X + X2))

O[7,−3] = − 1
2 i(858(Jm3 + J p3)J z3 + 143(−Jm3 + J p3)J z4

− 66(Jm3 + J p3)J z(−49 + 3X)

+ 11(Jm3 − J p3)J z2(−215 + 6X) + 3(−Jm3 + J p3)(600 − 62X + X2))

O[7, 2] = 1
2 (715(−Jm2 + J p2)J z4 + 143(Jm2 + J p2)J z5−55(Jm2 + J p2)J z3(−37 + 2X)

+ 55(Jm2 − J p2)J z2(−59 + 6X) + 15(−Jm2 + J p2)(72 − 18X + X2)

+ (Jm2 + J p2)J z(2862 − 490X + 15X2))

O[7,−2] = − 1
2 i(715(Jm2 + J p2)J z4 + 143(−Jm2 + J p2)J z5

+ 55(Jm2 − J p2)J z3(−37 + 2X) − 55(Jm2 + J p2)J z2(−59 + 6X)

+ 15(Jm2 + J p2)(72 − 18X + X2)

+ (−Jm2 + J p2)J z(2862 − 490X + 15X2))

O[7, 1] = 1
2 (1287(−Jm + J p)J z5 + 429(Jm + J p)J z6

+ 495(Jm − J p)J z3(−11 + 2X) − 165(Jm + J p)J z4(−23 + 3X)

+ 9(−Jm + J p)J z(332 − 160X + 15X2)

+ 3(Jm + J p)J z2(1832 − 645X + 45X2)

− 5(Jm + J p)(−144 + 108X − 20X2 + X3))

O[7,−1] = − 1
2 i(1287(Jm + J p)J z5 + 429(−Jm + J p)J z6

− 495(Jm + J p)J z3(−11 + 2X) + 165(Jm − J p)J z4(−23 + 3X)

+ 9(Jm + J p)J z(332 − 160X + 15X2)

+ 3(−Jm + J p)J z2(1832 − 645X + 45X2)

+ 5(Jm − J p)(−144 + 108X − 20X2 + X3))

O[7, 0] = J z(180 + 429J z6 − 882X + 385X2 − 35X3 − 231J z4(−10 + 3X)

+ 21J z2(101 − 105X + 15X2)).

B.2. Listing of the explicit form for the ES operators with k = 8, 10, 12 and for positive
values of q only

Note: J p = J+; Jm = J−; X = J (J + 1)

O[8, 8] = 1
2 (Jm8 + J p8)

O[8, 7] = 1
4 (Jm7(−7 + 2J z) + J p7(7 + 2J z))

O[8, 6] = 1
2 (90(−Jm6 + J p6)J z + 15(Jm6 + J p6)J z2 − (Jm6 + J p6)(−147 + X))

O[8, 5] = 1
4 (Jm5(−5 + 2J z)(42 − 25J z + 5J z2 − X)

+ J p5(5 + 2J z)(42 + 25J z + 5J z2 − X))

O[8, 4] = 1
2 (520(−Jm4 + J p4)J z3 + 65(Jm4 + J p4)J z4 − 13(Jm4 + J p4)J z2(−139 + 2X)

+ 52(Jm4 − J p4)J z(−59 + 2X) + (Jm4 + J p4)(2100 − 122X + X2))

O[8, 3] = 1
4 (J p3(3 + 2J z)(840 + 234J z3 + 39J z4 − 78J z(−15 + X) − 106X + 3X2

− 13J z2(−57 + 2X)) + Jm3(−3 + 2J z)(840 − 234J z3 + 39J z4

+ 78J z(−15 + X) − 106X + 3X2 − 13J z2(−57 + 2X)))
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O[8, 2] = 1
2 (858(−Jm2 + J p2)J z5 + 143(Jm2 + J p2)J z6 − 143(Jm2 + J p2)J z4(−22 + X)

+ 572(Jm2 − J p2)J z3(−12 + X) + 11(Jm2 + J p2)J z2(853 − 119X

+ 3X2) + 22(−Jm2 + J p2)J z(333 − 67X + 3X2)

− (Jm2 + J p2)(−2520 + 702X − 53X2 + X3))

O[8, 1] = 1
4 (5005(−Jm + J p)J z6 + 1430(Jm + J p)J z7 + 5005(Jm − J p)J z4(−7 + X)

− 1001(Jm + J p)J z5(−19 + 2X) + 385(Jm + J p)J z3(131 − 36X + 2X2)

+ 385(−Jm + J p)J z2(112 − 41X + 3X2) + (Jm + J p)J z(22 356 − 12 488X

+ 1785X2 − 70X3) + 35(Jm − J p)(−144 + 108X − 20X2 + X3))

O[8, 0] = 1
2 (12 870J z8 − 12 012J z6(−9 + 2X) + 2310J z4(81 − 56X + 6X2)

+ 70X (−144 + 108X − 20X2 + X3)

− 12J z2(−4566 + 9898X − 3045X2 + 210X3))

O[10, 10] = 1
2 (Jm10 + J p10)

O[10, 9] = 1
4 (Jm9(−9 + 2J z) + J p9(9 + 2J z))

O[10, 8] = 1
2 (Jm8(324 − 152J z + 19J z2 − X) + J p8(324 + 152J z + 19J z2 − X))

O[10, 7] = 1
4 (Jm7(−7 + 2J z)(288 − 133J z + 19J z2 − 3X)

+ J p7(7 + 2J z)(288 + 133J z + 19J z2 − 3X))

O[10, 6] = 1
2 (3876(−Jm6 + J p6)J z3 + 323(Jm6 + J p6)J z4

− 17(Jm6 + J p6)J z2(−1127 + 6X)

+ 102(Jm6 − J p6)J z(−443 + 6X) + 3(Jm6 + J p6)(14 112 − 338X + X2))

O[10, 5] = 1
4 (8075(−Jm5 + J p5)J z4 + 646(Jm5 + J p5)J z5

− 340(Jm5 + J p5)J z3(−134 + X) + 425(Jm5 − J p5)J z2(−329 + 6X)

+ 15(−Jm5 + J p5)(10 584 − 500X + 5X2)

+ 2(Jm5 + J p5)J z(114 627 − 3625X + 15X2))

O[10, 4] = 1
2 (3876(−Jm4 + J p4)J z5 + 323(Jm4 + J p4)J z6

+ 2040(Jm4 − J p4)J z3(−39 + X) − 85(Jm4 + J p4)J z4(−269 + 3X)

+ 12(−Jm4 + J p4)J z(16 792 − 1075X + 15X2)

+ (Jm4 + J p4)J z2(168 152 − 7305X + 45X2)

− (Jm4 + J p4)(−105 840 + 9252X − 218X2 + X3))

O[10, 3] = 1
4 (6783(−Jm3 + J p3)J z6 + 646(Jm3 + J p3)J z7

+ 1785(Jm3 − J p3)J z4(−79 + 3X) − 119(Jm3 + J p3)J z5(−329 + 6X)

+ 63(−Jm3 + J p3)J z2(8054 − 735X + 15X2)

+ 7(Jm3 + J p3)J z3(47 677 − 3000X + 30X2)

+ (Jm3 + J p3)J z(453 024 − 56 154X + 1897X2 − 14X3)

+ 21(Jm3 − J p3)(−8640 + 1392X − 68X2 + X3))

O[10, 2] = 1
2 (33 592(−Jm2 + J p2)J z7 + 4199(Jm2 + J p2)J z8

− 3094(Jm2 + J p2)J z6(−59 + 2X) + 6188(Jm2 − J p2)J z5(−101 + 6X)

+ 91(Jm2 + J p2)J z4(16 601 − 1640X + 30X2)

+ 364(−Jm2 + J p2)J z3(6877 − 960X + 30X2)
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− 26(Jm2 + J p2)J z2(−106 074 + 20 230X − 1057X2 + 14X3)

+ 52(Jm2 − J p2)J z(−34 956 + 8694X − 637X2 + 14X3)

+ 7(Jm2 + J p2)(77 760 − 24 768X + 2484X2 − 92X3 + X4))

O[10, 1] = 1
4 (37 791(−Jm + J p)J z8 + 8398(Jm + J p)J z9

+ 27 846(Jm − J p)J z6(−21 + 2X) − 5304(Jm + J p)J z7(−41 + 3X)

+ 546(Jm + J p)J z5(2603 − 474X + 18X2)

+ 819(−Jm + J p)J z4(2661 − 620X + 30X2)

+ 234(Jm − J p)J z2(−8186 + 3640X − 427X2 + 14X3)

− 52(Jm + J p)J z3(−49 073 + 17 073X − 1596X2 + 42X3)

+ 63(−Jm + J p)(2880 − 2304X + 508X2 − 40X3 + X4)

+ 6(Jm + J p)J z(146 904 − 90 504X + 15 946X2 − 1022X3 + 21X4))

O[10, 0] = 46 189J z10 − 36 465J z8(−22 + 3X) + 3003J z6(1199 − 450X + 30X2)

− 715J z4(−6248 + 5481X − 966X2 + 42X3)

− 63X (2880 − 2304X + 508X2 − 40X3 + X4)

+ 33J z2(32 208 − 78 900X + 29 680X2 − 3290X3 + 105X4)

O[12, 12] = 1
2 (Jm12 + J p12)

O[12, 11] = 1
4 (Jm11(−11 + 2J z) + J p11(11 + 2J z))

O[12, 10] = 1
2 (Jm10(605 − 230J z + 23J z2 − X) + J p10(605 + 230J z + 23J z2 − X))

O[12, 9] = 1
4 (Jm9(−9 + 2J z)(550 − 207J z + 23J z2 − 3X)

+ J p9(9 + 2J z)(550 + 207J z + 23J z2 − 3X))

O[12, 8] = 1
2 (2576(−Jm8 + J p8)J z3 + 161(Jm8 + J p8)J z4

− 7(Jm8 + J p8)J z2(−2365 + 6X) + 56(Jm8 − J p8)J z(−893 + 6X)

+ (Jm8 + J p8)(59 400 − 722X + X2))

O[12, 7] = 1
4 (5635(−Jm7 + J p7)J z4 + 322(Jm7 + J p7)J z5

− 140(Jm7 + J p7)J z3(−306 + X) + 245(Jm7 − J p7)J z2

(−709 + 6X) + 35(−Jm7 + J p7)(9504 − 218X + X2)

+ 2(Jm7 + J p7)J z(185 749 − 2805X + 5X2))

O[12, 6] = 1
2 (55 062(−Jm6 + J p6)J z5 + 3059(Jm6 + J p6)J z6

− 665(Jm6 + J p6)J z4(−688 + 3X) + 7980(Jm6 − J p6)J z3(−274 + 3X)

+ 19(Jm6 + J p6)J z2(328 739 − 6315X + 15X2)

+ 114(−Jm6 + J p6)J z(87 827 − 2535X + 15X2)

− 5(Jm6 + J p6)(−1397 088 + 55 578X − 575X2 + X3))

O[12, 5] = 1
4 (15 295(−Jm5 + J p5)J z6 + 874(Jm5 + J p5)J z7

+ 3325(Jm5 − J p5)J z4(−205 + 3X) − 133(Jm5 + J p5)J z5(−985 + 6X)

+ 19(Jm5 + J p5)J z3(120 079 − 3020X + 10X2)

+ 95(−Jm5 + J p5)J z2(51 056 − 1905X + 15X2)

+ (Jm5 + J p5)J z(6010 260 − 306 652X + 4135X2 − 10X3)

+ 5(Jm5 − J p5)(−665 280 + 44 076X − 880X2 + 5X3))
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O[12, 4] = 1
2 (118 864(−Jm4 + J p4)J z7 + 7429(Jm4 + J p4)J z8

− 4522(Jm4 + J p4)J z6(−221 + 2X) + 18 088(Jm4 − J p4)J z5(−295 + 6X)

+ 323(Jm4 + J p4)J z4(59 767 − 2040X + 10X2)

+ 2584(−Jm4 + J p4)J z3(18 439 − 920X + 10X2)

− 34(Jm4 + J p4)J z2(−2279 002 + 154 234X − 2805X2 + 10X3)

+ 136(Jm4 − J p4)J z(−553 650 + 48 442X − 1285X2 + 10X3)

+ 5(Jm4 + J p4)(6652 800 − 728 400X + 26 188X2 − 340X3 + X4))

O[12, 3] = 1
4 (200 583(−Jm3 + J p3)J z8 + 14 858(Jm3 + J p3)J z9

− 7752(Jm3 + J p3)J z7(−205 + 3X) + 40 698(Jm3 − J p3)J z6(−203 + 6X)

+ 1938(Jm3 + J p3)J z5(15 689 − 762X + 6X2)

+ 2907(−Jm3 + J p3)J z4(27 541 − 1920X + 30X2)

− 68(Jm3 + J p3)J z3(−2190 575 + 205 803X − 5280X2 + 30X3)

+ 306(Jm3 − J p3)J z2(−610 706 + 73 962X − 2715X2 + 30X3)

+ 45(−Jm3 + J p3)(1108 800 − 206 400X + 13 148X2 − 340X3 + 3X4)

+ 6(Jm3 + J p3)J z(23 730 600 − 3600 564X +178 042X2−3230X3 + 15X4))

O[12, 2] = 1
2 (74 290(−Jm2 + J p2)J z9 + 7429(Jm2 + J p2)J z10

− 4845(Jm2 + J p2)J z8(−113 + 3X) + 38 760(Jm2 − J p2)J z7(−67 + 3X)

+ 9690(−Jm2 + J p2)J z5(2501 − 258X + 6X2)

+ 969(Jm2 + J p2)J z6(9563 − 710X + 10X2)

− 85(Jm2 + J p2)J z4(−554 219 + 77 439X − 3000X2 + 30X3)

+ 340(Jm2 − J p2)J z3(−193 637 + 34 803X − 1860X2 + 30X3)

+ 30(−Jm2 + J p2)J z(1228 584 − 346 356X + 32 182X2 − 1190X3 + 15X4)

+ 3(Jm2 + J p2)J z2(20 983 308−4771 720X +345 870X2−9350X3 + 75X4)

− 3(Jm2 + J p2)(−3326 400 + 1152 000X − 135 444X2

+ 6808X3 − 145X4 + X5))

O[12, 1] = 1
4 (572 033(−Jm + J p)J z10 + 104 006(Jm + J p)J z11

− 124 355(Jm + J p)J z9(−37 + 2X) + 373 065(Jm − J p)J z8(−44 + 3X)

+ 42 636(Jm + J p)J z7(1383 − 180X + 5X2)

+ 74 613(−Jm + J p)J z6(1793 − 290X + 10X2)

− 6545(Jm + J p)J z5(−39 755 + 9498X − 630X2 + 12X3)

+ 6545(Jm − J p)J z4(−53 702 + 15 879X − 1290X2 + 30X3)

+ 154(Jm + J p)J z3(2341 414 − 937 880X + 113 055X2 − 5100X3 + 75X4)

+ 231(−Jm + J p)J z2(1065 768 − 531 580X + 78 120X2 − 4250X3 + 75X4)

+ 231(Jm − J p)(−86 400 + 72 000X − 17 544X2 + 1708X3 − 70X4 + X5)

− 3(Jm + J p)J z(−34 637 280 + 22 740 960X − 4531 076X2

+ 367 752X3 − 12 705X4 + 154X5))

O[12, 0] = 676 039J z12 − 323 323J z10(−65 + 6X) + 138 567J z8(1391 − 330X + 15X2)

− 17 017J z6(−35 945 + 17 622X − 2010X2 + 60X3)

+ 1001J z4(606 164 − 618 090X + 139 245X2 − 10200X3 + 225X4)
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+ 231X (−86 400 + 72 000X − 17 544X2 + 1708X3 − 70X4 + X5)

− 39J z2(−3176 160 + 8488 392X − 3601 048X2 + 501 116X3

− 26 565X4 + 462X5).

Appendix C. Corrections to various operator listings

The original (O) expressions from a given source and the corrected (C) ones are given below.
For clarity and easy identification, the nature of a given correction is also provided.

C.1. The listings of the STOs

Table 1 of Danielsen (1973) and Table 1 of Lindgård and Danielsen (1974)

O: Õ8,0 = 1
128 [6435J 8

z − {12 012X − 54 054}J 6
z + {6930X2 − 64 680X + 93 555}J 4

z

− {1260X3 − 18 270X2 + 59 388X − 21 390}J 2
z

+ 35X4 − 700X3 + 3780X2 − 5040X]

C: Õ8,0 = 1
128 [6435J 8

z − {12 012X − 54 054}J 6
z + {6930X2 − 64 680X + 93 555}J 4

z

− {1260X3 − 18 270X2 + 59 388X − 27 396}J 2
z

+ 35X4 − 700X3 + 3780X2 − 5040X]

‘−21 390’ should be replaced by ‘−27 396’.

Table 1 of Lindgård and Danielsen (1974)

O: Õ5±3 = ∓
√

35
256

1
2

[{
9J 2

z − X j 33
2

}
(J ±)3 + (J ±)3{· · ·}],

C: Õ5±3 = ∓
√

35
256

1
2

[{
9J 2

z − X − 33
2

}
(J ±)3 + (J ±)3{· · ·}];

‘X j 33
2 ’ should be replaced by ‘X − 33

2 ’.

C.2. The listings of the Stevens operators

Table 2 of Danielsen (1973) and Table 6 of Danielsen and Lindgård (1972)

O: O0
8 = 6435J 8

z − {12 012X − 54 054}J 6
z + {6930X2 − 64 680X + 93 555}J 4

z

+ {−1260X3 + 18 270X2 − 59 388X + 21 390}J 2
z

+ 35X4 − 700X3 + 3780X2 − 5040X

C: O0
8 = 6435J 8

z − {12 012X − 54 054}J 6
z + {6930X2 − 64 680X + 93 555}J 4

z

+ {−1260X3 + 18 270X2 − 59 388X + 27 396}J 2
z

+ 35X4 − 700X3 + 3780X2 − 5040X

‘+21 390’ should be replaced by ‘+27 396’.

C.3. The listings of the STOs

C.3.1. Table 1 in the asymmetric form of Buckmaster and Dering (1967).

O: T4±4 = + 1
2 J 4

±, C: T4±4 = + 1
4 J 4

±; factor ‘+ 1
2 ’ should be replaced by ‘ + 1

4 ’
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O: T4±3 = ∓ 1
2

√
1
2 J 3

±{2J 2 ± 3}, C: T4±3 = ∓ 1
2

√
1
2 J 3

±{2J z ± 3};
‘2J 2’ should be replaced by ‘2Jz’

O: T5±1 = ∓ 1
4

√
5

21 J±{21J 4
z ± 42J 4

z − 7[2J (J + 1) + 9]J 2
z

∓ 14[J (J + 1) − 3]Jz + J 2(J + 1)2 − 8J (J + 1) + 12}

C: T5±1 = ∓ 1
4

√
5

21 J±{21J 4
z ± 42J 3

z − 7[2J (J + 1) − 9]J 2
z

∓ 14[J (J + 1) − 3]Jz + J 2(J + 1)2 − 8J (J + 1) + 12}
‘±42J 4

z ’ should be replaced by ‘±42J 3
z ’ and ‘+9’ replaced by ‘−9’

O: T6±1 = ∓ 1
4

√
1

22 {66J 5
z ± 165J 4

z − 60[J (J + 1) − 6]J 3
z ∓ 15[6J (J + 1) − 25]J 2

z

+ 2(5J (J + 1)2 − 55J (J + 1) + 117)J2 ∓ 5[J 2(J + 1)2

− 8J 2(J + 1)2 + 12]}
C: T6±1 = ∓ 1

4

√
1

22 J±{66J 5
z ± 165J 4

z − 60[J (J + 1) − 6]J 3
z ∓ 15[6J (J + 1) − 25]J 2

z

+ 2(5J 2(J + 1)2 − 55J (J + 1) + 117)Jz ∓ 5[J 2(J + 1)2

− 8J 2(J + 1)2 + 12]}
‘5J ’ should be replaced by ‘5J 2’; ‘J2’ by ‘Jz’, and ‘J±’

should appear in front of the RHS

O: T70 = + 1
8

√
1

143 {429J 7
z − 213[3J (J + 1) + 10]J 5

z + 21[15J 2(J + 1)2

− 105J (J + 1) + 101]J 3
z − 35J 3(J + 1)3 + 385J 2(J + 1)2

− 882J (J + 1) + 180}
C: T70 = + 1

4

√
1

429 [429J 7
z − 231[3J (J + 1) − 10]J 5

z + 21[15J 2(J + 1)2

− 105J (J + 1) − 101]J 3
z + (−35J 3(J + 1)3 + 385J 2(J + 1)2

− 882J (J + 1) + 180)Jz]

‘
√

1
143 ’ should be replaced by ‘

√
1

429 ’; ‘+10’ by ‘−10’ and

‘35J 3(J + 1)3 + 385J 2(J + 1)2 − 882J (J + 1) + 180’ by

‘(−35J 3(J + 1)3 + 385J 2(J + 1)2 − 882J (J + 1) + 180)Jz’

O: T7±2 = + 1
8

√
1

143 J±{143J 5
z ± 715J 4

z

− 55[2J (J + 1) − 37]J 3
z ∓ 55[6J (J + 1) − 59]J 2

z + [15J 2(J + 1)2

− 490J (J + 1) + 2862]Jz + 15[J 2(J + 1)2 − 18J (J + 1) + 72]}

C: T7±2 = + 1
8

√
1

143 J 2
±{143J 5

z ± 715J 4
z − 55[2J (J + 1) − 37]J 3

z ∓ 55[6J (J + 1)

− 59]J 2
z + [15J 2(J + 1)2 − 490J (J + 1) + 2862]Jz

± 15[J 2(J + 1)2 − 18J (J + 1) + 72]}
‘J±’ should be replaced by ‘J 2

±’ and ‘+15’ by ‘±15’

O: T7±5 = ∓ 1
8

√
7
26 J 5

±{13J 2 ± 65Jz − J (J + 1) + 90}
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C: T7±5 = ∓ 1
8

√
7

26 J 5
±{13J 2

z ± 65Jz − J (J + 1) + 90}
‘13J 2’ should be replaced by ‘13J 2

z ’.

C.3.2. Table 2 in the symmetric form of Buckmaster and Dering (1967).

O: T4±2 = + 1
4

√
1
7 [J 2

±{7J 2
z − J (J + 1) − 5} + {7J 2

z − J (J + 1) − 5}J 2
±]

C: T4±2 = + 1
2

√
1
7 [J 2

±{7J 2
z − J (J + 1) − 5} + {7J 2

z − J (J + 1) − 5}J 2
±]

‘+ 1
4 ’ should be replaced by ‘+ 1

2 ’

O: T5±2 = + 1
4

√
5
3 [J 2

±{3J 3
z − [J (J + 1) + 6]J 2

z + 2J 2(J + 1)2 − 2J (J + 1) + 3}
+ {3J 3

z − [J (J + 1) + 6]J 2
z + 2J 2(J + 1)2 − 2J (J + 1) + 3}J 2

±]

C: T5±2 = + 1
4

√
5
3 [J 2

±{3J 3
z − [J (J + 1) + 6]Jz} + {3J 3

z − [J (J + 1) + 6]Jz+}J 2
±]

‘[J (J + 1) + 6]J 2
z ’ should be replaced by ‘[J (J + 1) + 6]Jz’ and

‘ + 2J 2(J + 1)2 − 2J (J + 1) + 3’ should be deleted

O: T70 = + 1
4

√
1

143 [429J 7
z − 231[3J (J + 1) + 10]J 5

z + 21[15J 2(J + 1)2 − 105J (J + 1)

+ 101]J 3
z − 35J 3(J + 1)3 + 385J 2(J + 1)2 − 882J (J + 1) + 180]

C: T70 = + 1
4

√
1

429 [429J 7
z − 231[3J (J + 1) − 10]J 5

z + 21[15J 2(J + 1)2

− 105J (J + 1) − 101]J 3
z + (−35J 3(J + 1)3

+ 385J 2(J + 1)2 − 882J (J + 1) + 180)Jz]

‘
√

1
143 ’ should be replaced by ‘

√
1

429 ’; ‘+10’ by ‘−10’; ‘35J 3(J + 1)3

+ 385J 2(J + 1)2 − 882J (J + 1) + 180’ by ‘(−35J 3(J + 1)3

+ 385J 2(J + 1)2 − 882J (J + 1) + 180)Jz’.

C.4. Table 2 in Tuszynski (1990)

O: T 3
±2(J ) = + 1

2 ( 3
1 )1/2 J 3

±{Jz ± 1} C : T 3
±2(J ) = + 1

2 ( 3
1 )1/2 J 2

±{Jz ± 1};
‘J 3

±’ should be replaced by ‘J 2
±’

O: T 6
±2T6±2(J ) = + 1

8 ( 5
11 )1/2 J 2

±{3J 4
z ± 132J 2

z + 3[91 − 6J (J + 1)]J 2
z

± 6[47 − 6J (J + (J + 1)] + [120 − 26J (J + 1) + J 2(J + 1)2]}
C: T 6

±2(J ) = + 1
8 ( 5

11 )1/2 J 2
±{33J 4

z ± 132J 3
z + 3[91 − 6J (J + 1)]J 2

z

± 6[47 − 6J (J + 1)]Jz + [120 − 26J (J + 1) + J 2(J + 1)2]}
‘T 6

±2T6±2(J )’ should be replaced by ‘T 6
±2(J )’; ‘3J 4

z ’ by ‘33J 4
z ’;

‘ ± 6[47 − 6J (J + (J + 1)]’ by ‘ ± 6[47 − 6J (J + 1)]Jz’

O: T 6
±1(J ) = ± 1

4 ( 1
22 )1/2 J±{66J 4

z ± 165J 4
z + 60[6 − J (J + 1)]J 3

z ± 15[25 − 6J (J + 1)]J 2
z

+ 2[117 − 55J (J + 1) + 5J 2(J + 1)2]

± 5[12 − 8J (J + 1) + J 2(J + 1)2]}
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C: T 6
±1(J ) = ∓ 1

4 ( 1
22 )1/2 J±{66J 5

z ± 165J 4
z + 60[6 − J (J + 1)]J 3

z ± 15[25 − 6J (J + 1)]J 2
z

+ 2[117 − 55J (J + 1) + 5J 2(J + 1)2]Jz

± 5[12 − 8J (J + 1) + J 2(J + 1)2]}
‘± 1

4 ( 1
22 )1/2’ should be replaced by ‘∓ 1

4 ( 1
22 )1/2’; ‘66J 4

z ’ by

‘66J 5
z ’; ‘2[117 − 55J (J + 1) + 5J 2(J + 1)2]’ by

‘2[117 − 55J (J + 1) + 5J 2(J + 1)2]Jz’.

C.5. Misra et al (1996) and M99

O: Ŷ ±1
5 = 1

2 {[21S4
z − 14S(S + 1)S2

z + S2(S + 1)2 − S(S − 1) + 3
2 ]S± + S±[21S4

z

− 14S(S + 1)S2
z + S2(S + 1)2 − S(S − 1) + 3

2 ]}
C: Ŷ ±1

5 = 1
2 {[21S4

z − 14S(S + 1)S2
z + S2(S + 1)2 − S(S + 1) + 3

2 ]S± + S±[21S4
z

− 14S(S + 1)S2
z + S2(S + 1)2 − S(S + 1) + 3

2 ]}
term ‘−S(S − 1)’ should be replaced (twice) by ‘−S(S + 1)’

O: Ŷ ±2
5 = 1

2 {[3S3
z − (S(S + 1) + 5)Sz]S2

± + S2
±[3S3

z − (S(S + 1) + 5)Sz]}
C: Ŷ ±2

5 = 1
2 {[3S3

z − (S(S + 1) + 6)Sz]S2
± + S2

±[3S3
z − (S(S + 1) + 6)Sz]}

factor ‘5’ should be replaced (twice) by ‘6’

O: Ŷ ±1
6 = 1

2 {[35S5
z − (30S(S + 1) − 15)S3

z + (5S2(S + 1)2 − 10S(S + 1) + 12)Sz]S±
+ S±[35S5

z − (30S(S + 1) − 15)S3
z + (5S2(S + 1)2 − 10S(S + 1) + 12)Sz]}

C: Ŷ ±1
6 = 1

2 {[33S5
z − (30S(S + 1) − 15)S3

z + (5S2(S + 1)2 − 10S(S + 1) + 12)Sz ]S±
+ S±[33S5

z − (30S(S + 1) − 15)S3
z + (5S2(S + 1)2 − 10S(S + 1) + 12)Sz]}

factor ‘35’ should be replaced (twice) by ‘33’.
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Allard P and Härd T 2001 J. Magn. Reson. 153 15
Altshuler S and Kozyrev B M 1972 Electron Paramagnetic Resonance in Compounds of Transition Elements (Moscow:

Nauka) (in Russian) [A/K(R)]
Altshuler S and Kozyrev B M 1974 Electron Paramagnetic Resonance in Compounds of Transition Elements (New

York: Wiley) [A/K(E)]
Barra A-L, Brunel L-C, Gatteschi D, Pardi L and Sessoli R 1998 Acc. Chem. Res. 31 460
Birgeneau R J 1967 Can. J. Phys. 45 3761
Buckmaster H A 1962 Can. J. Phys. 40 1670
Buckmaster H A 1964 Can. J. Phys. 42 386
Buckmaster H A 1966 Can. J. Phys. 44 2525
Buckmaster H A and Chatterjee R 1998 Phys. Status Solidi b 209 433
Buckmaster H A, Chatterjee R and Shing Y H 1972 Phys. Status Solidi a 13 9
Buckmaster H A and Dering J C 1967 Tables of angular momentum tensor operators Tlm (J ) [l = 0–7) and their

matrix elements for J = 0 → 8(1/2) useful in the interpretation of electron paramagnetic resonance spectra,
unpublished

Chung C Y 2003 Computer simulations for EPR studies of high-spin complexes at low symmetry MPhil Thesis City
University of Hong Kong



5846 C Rudowicz and C Y Chung

Chung T C Y and Rudowicz C 2000 On the truncated spin Hamiltonians used in EMR and magnetism studies—
example: Mn12 S = 10 complex 42nd Rocky Mountain Conf.—23rd Int. EPR Symp. Conf. (Denver, USA, July
2000)

Danielsen O 1973 Quantum mechanical operator equivalents and magnetic anisotropy of the heavy rare earth metals
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